Complete the Square

Compute the integral $\int \frac{dx}{\sqrt{2x-x^2}}$ by completing the square.

Complete the Square

Compute the integral $\int \frac{dx}{\sqrt{2x-x^2}}$ by completing the square.

$$\int \frac{dx}{\sqrt{2x-x^2}}$$

$$= \int \frac{dx}{\sqrt{-(x-y^2+1)}}$$

$$= \int \frac{dy}{\sqrt{-(x-y^2+1)}}$$

$$= \int \frac{-\sin\theta}{\sqrt{-\cos^2\theta+1}} d\theta$$

$$= -\int \frac{\sin\theta}{\sin^2\theta} d\theta$$

$$= -\int d\theta$$

$$= -\cot\cos\theta + C$$

$$= -\arccos(x-1) + C$$

appleting the square.

$$2x - x^{2}$$

$$= -(x^{2} - 2x + (1)^{2} - (1)^{2})$$

$$= -(x - 1)^{2} + 1$$

Let $u = x - 1$.

and $u = \cos \theta$.

$$= -\sin \theta d\theta$$

$$y = -\sin \theta d\theta$$

$$y = -\sin \theta d\theta$$

$$\cos y = x - 1$$

$$-\sin y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = -\frac{1}{2x - x^{2}}$$